
The photolysis of tricyclic ladder oligosilanes gave a
cyclotetrasilene intermediate, which was trapped by methanol,
2,3-dimethyl-1,3-butadiene, and anthracene.  Anthracene under-
went a cycloaddition with the cyclotetrasilenes at the 9,10- and
1,4-positions depending on the substituents on the cyclotetrasi-
lene rings.

The photochemical cleavage of Si−Si bonds of cyclotetra-
silanes has been reported to generate several reactive intermedi-
ates.1 For example, Nagai and co-workers reported that sily-
lene and cyclotrisilane are generated during the photolysis of a
cyclotetrasilane with a folded structure.2 Shizuka, Nagai, West,
and co-workers reported that the photolysis of planar cyclo-
tetrasilanes gives two molecules of disilene.3 The photolysis of
ladder oligosilanes4 seems to be an interesting subject since
many Si−Si bond cleavage paths are possible.  We report the
generation of a cyclotetrasilene5 by the photolysis of the tri-
cyclic ladder oligosilanes and its reactions with methanol, 2,3-
dimethyl-1,3-butadiene, and anthracene.  Also, the structural
features of products are noted.

Upon irradiation of hexane solutions of 1 and 2 in the pres-
ence of methanol, 2,3-dimethyl-1,3-butadiene, and anthracene
with a high-pressure mercury lamp through a filter, the cyclo-
tetrasilane derivatives 5−10 were formed.6−9 In these reactions,
the trap products of the dialkylsilylene and tetraalkyldisilene
intermediates were not detected.  These results indicate that two
peripheral Si−Si bonds in the central cyclotetrasilane ring are
selectively cleaved to afford two molecules of the cyclotetrasi-
lene intermediates 3 and 4.  It seems interesting that silylene is
not formed but cyclotetrasilene is formed from 1 and 2, in
which each cyclotetrasilane ring has a folded structure.4e

The site selectivity in the Diels-Alder reactions of 3 and 4
with anthracene is especially noted.  The cycloaddition of 3
takes place at the 9,10-positions of anthracene according to the
frontier orbital theory.10 However, in the case of 4, the
cycloaddition at the 9,10-positions is unfavorable because of
the steric hindrance between the t-butyl groups and a benzene
ring.  Avoiding such steric hindrance, the cycloaddition of 4
took place at the 1,4-positions to give 10.  To our knowledge,
this is the first example of the Diels-Alder reaction of
anthracene at the 1,4-positions.

The structures of 8−10 were determined by X-ray crystallog-
raphy (Figures 1−3).11−13 Compound 8 has a cis-fused bicyclic
structure.  The cyclotetrasilane ring has a moderately folded struc-
ture with fold angles of 14.0 and 14.3°.  It is remarkable that the
disilacyclohexene ring has a half-boat structure which is a transi-
tion state between the two stable half-chair structures of cyclohex-
ene.14 Compound 8 cannot adopt the half-chair structure which
makes the Si(1)−Si(4) and Si(2)−Si(3) bonds axial and equatorial,
causing a highly folded structure of cyclotetrasilane with an
excessive steric hindrance between the isopropyl and t-butyl
groups.  Another feature of 8 is the significantly short length of
the Si(1)−Si(2) bond (2.349(1) Å) compared with the other Si−Si
bonds.  The 2-butene-1,4-diyl group does not seem long enough
to connect the Si(1) and Si(2) atoms without distortion.

Compounds 9 and 10 have several structural features.  The
Si(1)−Si(4) bond lengths (9: 2.343(1) Å, 10: 2.367(2) Å) are
shorter than the other Si−Si bonds (9: 2.370(1)−2.396(1) Å, 10:
2.399(1)−2.440(1) Å).  The cyclotetrasilane rings have slightly
folded structures with fold angles of 4.2° in 9 and 7.7° in 10.
The fold angles produce strain by making the two Si−C(benzyl)
bonds unparallel and orienting the two C(ipso)−C(benzyl)
bonds above and below the benzene ring.  As a result, the naph-
thalene ring of 10 cannot adopt a planar structure but only a
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partially twisted structure, the dihedral angle between the terminal
rungs (C(5)−C(14) and C(9)−C(10)) being 6.3°.  Another defor-
mation is caused by the steric repulsion between the benzene ring
and the isopropyl groups.  In the case of 9, for example, the Si(2)−
Si(1)−C(1) (116.4(1)°) and Si(3)−Si(4)−C(8) (116.7(1)°) bond
angles are larger than the C(1)−Si(1)−C(15) (109.7(1)°) and C(8)−
Si(4)−C(16) (107.2(2)°) bond angles, and the Si(1)−C(1)−C(14)
(112.3(2)°) and Si(4)−C(8)−C(9) (111.5(2)°) bond angles are larg-
er than the Si(1)−C(1)−C(2) (104.6(2)°) and Si(4)−C(8)−C(7)
(105.3(2)°) bond angles.  In spite of this deformation, the methine
protons of the two isopropyl groups are located above the benzene
ring with the short distances of 2.81 and 2.86 Å in 9 and 2.49 and
2.61 Å in 10, causing an upfield shift in the 1H NMR spectra (9: δ
0.18 ppm, 10: δ −0.17 ppm).

In summary, the photolysis of 1 and 2 results in the genera-
tion of peralkylcyclotetrasilenes, which provides the opportuni-
ty for assessing the reactivity of the unsaturated Si4 framework.
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