Photolysis of *anti***-Dodecaalkyltricyclo[4.2.0.02,5]octasilane: Generation and Reactions of Cyclotetrasilene**

Soichiro Kyushin, Akira Meguro, Masafumi Unno, and Hideyuki Matsumoto* *Department of Applied Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515*

(Received January 31, 2000; CL-000096)

The photolysis of tricyclic ladder oligosilanes gave a cyclotetrasilene intermediate, which was trapped by methanol, 2,3-dimethyl-1,3-butadiene, and anthracene. Anthracene underwent a cycloaddition with the cyclotetrasilenes at the 9,10- and 1,4-positions depending on the substituents on the cyclotetrasilene rings.

The photochemical cleavage of Si−Si bonds of cyclotetrasilanes has been reported to generate several reactive intermediates.¹ For example, Nagai and co-workers reported that silylene and cyclotrisilane are generated during the photolysis of a cyclotetrasilane with a folded structure.² Shizuka, Nagai, West, and co-workers reported that the photolysis of planar cyclotetrasilanes gives two molecules of disilene. 3 The photolysis of ladder oligosilanes⁴ seems to be an interesting subject since many Si−Si bond cleavage paths are possible. We report the generation of a cyclotetrasilene⁵ by the photolysis of the tricyclic ladder oligosilanes and its reactions with methanol, 2,3 dimethyl-1,3-butadiene, and anthracene. Also, the structural features of products are noted.

Upon irradiation of hexane solutions of **1** and **2** in the presence of methanol, 2,3-dimethyl-1,3-butadiene, and anthracene with a high-pressure mercury lamp through a filter, the cyclotetrasilane derivatives **5**−**10** were formed.6[−]⁹ In these reactions, the trap products of the dialkylsilylene and tetraalkyldisilene intermediates were not detected. These results indicate that two peripheral Si−Si bonds in the central cyclotetrasilane ring are selectively cleaved to afford two molecules of the cyclotetrasilene intermediates **3** and **4**. It seems interesting that silylene is not formed but cyclotetrasilene is formed from **1** and **2**, in which each cyclotetrasilane ring has a folded structure.^{4e}

The site selectivity in the Diels-Alder reactions of **3** and **4** with anthracene is especially noted. The cycloaddition of **3** takes place at the 9,10-positions of anthracene according to the frontier orbital theory.¹⁰ However, in the case of **4**, the cycloaddition at the 9,10-positions is unfavorable because of the steric hindrance between the *t*-butyl groups and a benzene ring. Avoiding such steric hindrance, the cycloaddition of **4** took place at the 1,4-positions to give **10**. To our knowledge, this is the first example of the Diels-Alder reaction of anthracene at the 1,4-positions.

The structures of **8**−**10** were determined by X-ray crystallography (Figures 1−3).11[−]¹³ Compound **8** has a *cis*-fused bicyclic structure. The cyclotetrasilane ring has a moderately folded structure with fold angles of 14.0 and 14.3°. It is remarkable that the disilacyclohexene ring has a half-boat structure which is a transition state between the two stable half-chair structures of cyclohexene.14 Compound **8** cannot adopt the half-chair structure which makes the Si(1)−Si(4) and Si(2)−Si(3) bonds axial and equatorial, causing a highly folded structure of cyclotetrasilane with an excessive steric hindrance between the isopropyl and *t*-butyl groups. Another feature of **8** is the significantly short length of the Si(1)−Si(2) bond (2.349(1) Å) compared with the other Si−Si bonds. The 2-butene-1,4-diyl group does not seem long enough to connect the Si(1) and Si(2) atoms without distortion.

Figure 1. Molecular structure of 8. Selected bond lengths (\hat{A}) : Si(1)-Si(2) 2.349(1), Si(1)–Si(4) 2.382(1), Si(1)–C(1) 1.925(3), Si(2)–Si(3)
2.398(1), Si(2)–C(4) 1.917(3), Si(3)–Si(4) 2.398(1), C(1)–C(2) 1.514(4), $C(2)$ - $C(3)$ 1.330(4), $C(3)$ - $C(4)$ 1.512(4).

Compounds **9** and **10** have several structural features. The Si(1)−Si(4) bond lengths (**9**: 2.343(1) Å, **10**: 2.367(2) Å) are shorter than the other Si−Si bonds (**9**: 2.370(1)−2.396(1) Å, **10**: 2.399(1)−2.440(1) Å). The cyclotetrasilane rings have slightly folded structures with fold angles of 4.2° in **9** and 7.7° in **10**. The fold angles produce strain by making the two Si−C(benzyl) bonds unparallel and orienting the two C(ipso)−C(benzyl) bonds above and below the benzene ring. As a result, the naphthalene ring of **10** cannot adopt a planar structure but only a

Chemistry Letters 2000 495

partially twisted structure, the dihedral angle between the terminal rungs (C(5)–C(14) and C(9)–C(10)) being 6.3°. Another deformation is caused by the steric repulsion between the benzene ring and the isopropyl groups. In the case of **9**, for example, the Si(2)− Si(1)–C(1) (116.4(1)°) and Si(3)–Si(4)–C(8) (116.7(1)°) bond angles are larger than the C(1)–Si(1)–C(15) (109.7(1)°) and C(8)– Si(4)–C(16) (107.2(2)°) bond angles, and the Si(1)–C(1)–C(14) $(112.3(2)°)$ and Si(4)–C(8)–C(9) (111.5(2)°) bond angles are larger than the Si(1)–C(1)–C(2) (104.6(2)°) and Si(4)–C(8)–C(7) $(105.3(2)°)$ bond angles. In spite of this deformation, the methine protons of the two isopropyl groups are located above the benzene ring with the short distances of 2.81 and 2.86 Å in **9** and 2.49 and 2.61 Å in 10, causing an upfield shift in the ¹H NMR spectra $(9: \delta)$ 0.18 ppm, $10: \delta - 0.17$ ppm).

Figure 2. Molecular structure of 9. Selected bond lengths (Å): Si(1)-Figure 2. Molecular structure of 9. Selected bond lengths (A): S1(1)–
S1(2) 2.370(1), S1(1)–S1(4) 2.343(1), S1(1)–C(1) 1.948(3), S1(2)–S1(3)
2.396(1), S1(3)–S1(4) 2.391(1), S1(4)–C(8) 1.948(3), C(1)–C(2) 1.502(4), $C(1) - C(14)$ 1.502(4), C(2)–C(7) 1.391(4), C(7)–C(8) 1.511(4), C(8)–C(9) 1.506 (4), $C(9)$ - $C(14)$ 1.393(4).

Figure 3. Molecular structure of 10. Selected bond lengths (Å) and angles (°): Si(1)-Si(2) 2.399(1), Si(1)-Si(4) 2.367(2), Si(1)-C(1) 1.968(3), Si(2)- $Si(3)$ 2.407(2), $Si(3) - Si(4)$ 2.440(1), $Si(4) - C(4)$ 1.967(4); $Si(2) - Si(1) - C(1)$ 113.6(1), C(1)-Si(1)-C(15) 106.4(2), Si(3)-Si(4)-C(4) 115.2(1), C(4) $Si(4) - C(16)$ 108.8(2), $Si(1)-C(1)-C(2)$ 104.3(2), $Si(1)-C(1)-C(14)$ 113.6(3), Si(4)-C(4)-C(3) 106.9(2), Si(4)-C(4)-C(5) 110.4(2).

In summary, the photolysis of **1** and **2** results in the generation of peralkylcyclotetrasilenes, which provides the opportunity for assessing the reactivity of the unsaturated $Si₄$ framework.

This work was supported in part by Grants-in-Aid for

Scientific Research from the Ministry of Education, Science, Sports, and Culture (Nos. 09239103 and 09304058) and the Toray Science Foundation.

References and Notes

- 1 For a review, see, M. G. Steinmetz, *Chem. Rev.*, **95**, 1527 (1995).
- 2 H. Watanabe, Y. Kougo, and Y. Nagai, *J. Chem. Soc., Chem. Commun.*, **1984**, 66.
- 3 H. Shizuka, K. Murata, Y. Arai, K. Tonokura, H. Tanaka, H. Matsumoto, Y. Nagai, G. Gillette, and R. West, *J. Chem. Soc., Faraday Trans. 1*, **85**, 2369 (1989).
- 4 a) H. Matsumoto, H. Miyamoto, N. Kojima, and Y. Nagai, *J. Chem. Soc., Chem. Commun.*, **1987**, 1316. b) H. Matsumoto, H. Miyamoto, N. Kojima, Y. Nagai, and M. Goto, *Chem. Lett.*, **1988**, 629. c) S. Kyushin, H. Yamaguchi, T. Okayasu, Y. Yagihashi, H. Matsumoto, and M. Goto, *Chem. Lett.*, **1994**, 221. d) S. Kyushin, H. Matsumoto, Y. Kanemitsu, and M. Goto, *J. Phys. Soc. Jpn., Suppl. B*, **63**, 46 (1994). e) S. Kyushin, M. Kawabata, Y. Yagihashi, H. Matsumoto, and M. Goto, *Chem. Lett.*, **1994**, 997. f) S. Kyushin, H. Sakurai, H. Yamaguchi, M. Goto, and H. Matsumoto, *Chem. Lett.*, **1995**, 815. g) S. Kyushin, H. Sakurai, H. Yamaguchi, and H. Matsumoto, *Chem. Lett.*, **1996**, 331. h) S. Kyushin, Y. Yagihashi, and H. Matsumoto, *J. Organomet. Chem.*, **521**, 413 (1996). i) S. Kyushin, R. Tanaka, K. Arai, A. Sakamoto, and H. Matsumoto, *Chem. Lett.*, **1999**, 1297.
- 5 The syntheses and structures of the stable cyclotetrasilenes have recently been reported. See, M. Kira, T. Iwamoto, and C. Kabuto, *J. Am. Chem. Soc.*, **118**, 10303 (1996); N. Wiberg, H. Auer, H. Nöth, J. Knizek, and K. Polborn, *Angew. Chem., Int. Ed. Engl.*, **37**, 2869 (1998).
- 6 **6**: ¹H NMR (C₆D₆) δ 1.26–1.51 (m, 45H), 1.58 (sept, 1H, *J* = 7.5 Hz), 3.56 (s, 3H), 4.06 (s, 1H); ¹³C NMR (C₆D₆) δ 14.0, 14.9, 15.0, 15.2, 20.7, 22.2, 22.66, 22.70, 23.0, 23.1, 23.2, 23.6, 24.8, 29.1, 32.2, 55.2; ²⁹Si NMR (C₆D₆) δ –35.8, –9.4, –7.2, 41.4; IR (NaCl, cm[−]1) 2940, 2860, 2830, 2030, 1460, 1380, 1360, 1090; MS *m*/*z* (%) 430 (M+, 65), 415 (36), 373 (100), 331 (40), 317 (55), 275 (35), 89 (42), 73 (49), 58 (82).
- 7 The stereochemistries of **5** and **6** have not yet been determined because they do not easily crystallize. However, the ¹H NMR spectra show that **5** and **6** are single stereoisomers.
- 8 **8**: mp 156−158 °C; ¹H NMR (C₆D₆) δ 1.24−1.26 (m, 32H), 1.34 (d, 12H, *J* = 7.4 Hz), 1.44 (d, 2H, *J* = 14.4 Hz), 1.72 (sept, 2H, *J* = 7.4 Hz), 1.72 (d, 2H, $J = 14.4$ Hz), 1.87 (s, 6H); ¹³C NMR (C₆D₆) δ 14.8, 14.9, 20.9, 21.0, 21.7, 22.3, 23.1, 23.2, 23.3, 31.1, 126.1; ²⁹Si $12, 112, 112, 20.9, 21.0, 21.7, 22.3, 23.1, 23.2, 23.3, 31.1, 126.1; ²⁶$ Si

NMR (C₆D₆) δ −1.7, −0.1; IR (NaCl, cm^{−1}) 2940, 2860, 1460, 1390, 1360; MS *m*/*z* (%) 480 (M+, 83), 437 (51), 423 (53), 398 (44), 381 (26), 367 (32), 355 (71), 341 (35), 84 (94), 73 (100), 58 (90).
- 9 **10**: ¹H NMR (CD₂Cl₂) δ –0.17 (sept, 2H, $J = 7.5$ Hz), 0.70 (d, 6H, J = 7.5 Hz), 1.23 (d, 6H, *J* = 7.5 Hz), 1.26−1.27 (m, 24H), 1.31 (d, 6H, *J* = 7.5 Hz), 1.70 (sept, 2H, *J* = 7.5 Hz), 4.27 (dd, 2H, *J* = 5.2, 3.0 Hz), 6.42 (dd, 2H, *J* = 5.2, 3.0 Hz), 7.31 (dd, 2H, *J* = 6.3, 3.3 Hz), 7.52 (s, 2H), 7.64 (dd, 2H, *J* = 6.3, 3.3 Hz); 13C NMR (CD₂Cl₂) δ 11.1, 14.3, 20.0, 21.3, 21.7, 22.5, 23.8,
31.3, 38.5, 121.7, 124.1, 126.3, 130.8, 131.0, 140.8; ²⁹Si NMR (CD₂Cl₂) δ −6.3, 9.5; IR (NaCl, cm^{−1}) 3050,
2940, 2860, 1460, 1380, 1360; MS *m*/*z* (%) 576 (M⁺, 5), 398 (100), 355 (64), 342 (29), 341 (26), 178 (22).
- 10 K. Fukui, in "Molecular Orbitals in Chemistry, Physics, and Biology," ed by P.-O. Löwdin and B. Pullman, Academic Press, New York (1964), p. 513.
- 11 Crystal data for **8**: $C_{26}H_{56}Si_4$, $F_w = 481.06$, monoclinic, space group *P*₂₁/*n*, *a* = 8.1616(3), *b* = 22.3982(9), *c* = 17.8184(4) Å, *β* = 103.199(3)°, *V* = 3171.2(2) Å³, *Z* = 4, *D*_c = 1.008 g cm⁻³, *R* = 0.046, $R_{\rm w} = 0.044$ ($\rm w = 1/\sigma^2(F_0)$) for 4593 observed reflections.
- 12 Crystal data for $9: C_{32}H_{52}Si_4$, $F_w = 549.10$, monoclinic, space group *P*2₁/*c*, *a* = 9.8585(7), *b* = 19.7326(6), *c* = 17.3710(8) Å, *β* = 98.112(5)°, *V* = 3345.4(3) Å³, *Z* = 4, *D*_c = 1.090 g cm^{−3}, *R* = 0.046, $R_{\text{w}} = 0.043 \text{ (w} = 1/\sigma^2(F_{\text{o}})) \text{ for } 4340 \text{ observed reflections.}$
- 13 Crystal data for 10: $C_{34}H_{56}Si_4$, $F_w = 577.15$, monoclinic, space group *P*2₁/*c*, *a* = 10.563(4), *b* = 20.029(7), *c* = 16.737(2) Å, β = 91.24(2)°, *V* = 3539(1) Å³, *Z* = 4, *D*_c = 1.083 g cm⁻³, *R* = 0.050, *R*_w $= 0.042$ (w = $1/\sigma^2(F)$) for 3976 observed reflections.
- 14 H. B. Kagan, "La stéréochimie organique," Presses Universitaires de France, Paris (1975), Chap. 3.